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Figure 1. Upper green-bordered box illustrates a variety of content categories and challenging scenes in BrightVQA. The images in the
lower blue-bounded box show the impact of compression on UGC video quality. Some heavily distorted regions are highlighted in red.

Abstract

High Dynamic Range (HDR) videos offer superior lu-001
minance and color fidelity as compared to Standard Dy-002
namic Range (SDR) content. The rapid growth of User-003
Generated Content (UGC) on platforms such as YouTube,004
Instagram, and TikTok has brought a significant increase005
in the volumes of streamed and shared UGC videos. This006
newer category of videos brings new challenges to the de-007
velopment of effective No-Reference (NR) video quality as-008
sessment (VQA) models specialized to HDR UGC, because009
of the extreme variety and severities of distortions, aris-010
ing from diverse capture, editing, and processing outcomes.011
Towards addressing this issue, we introduce BrightVQ, a012
sizeable new psychometric data resource. It is the first013
large-scale subjective video quality database dedicated to014
the quality modelling of HDR UGC videos. BrightVQ com-015
prises 2,100 videos, on which we collected 73,794 percep-016
tual quality ratings. Using this dataset, we also devel-017
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oped BrightRate, a novel video quality prediction model 018
designed to capture both UGC-specific distortions coexist- 019
ing with HDR-specific artifacts. Extensive experimental re- 020
sults demonstrate that BrightRate achieves state-of-the-art 021
performance across HDR databases. 022

Figure 2. Benchmark performance of BrightRate(our) and other
leading state-of-the-art (SOTA) VQA models on available HDR
VQA datasets.
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Table 1. Overview of the BrightVQ Dataset, summarizing video
specifications (format, resolution, duration), the encoding bitrate
ladder,*with extensive subjective quality annotations.

Attribute Details
Video Specifications

Format Rec. 2020, 10-bit, PQ
Resolutions 1920×1080, 1080×1920,

1280×720, 720×1280,
640×360, 360×640

Bitrates(Mbps) 0.2, 0.5, 1.0, 2.0, 3.0, Reference
Duration(Sec.) 4 – 10

Dataset Statistics
Reference Videos 300 (150 Landscape, 150 Por-

trait)
Total Videos 2100
Total Scores 73,794
Avg. Scores/Video 35

1. Introduction023

The explosion of User-Generated Content (UGC) on plat-024
forms such as YouTube, Facebook, Instagram, and TikTok025
has transformed video streaming into a ubiquitous, user-026
driven experience, generating billions of daily views [1, 28,027
31]. However, the diverse distortion patterns from inexpert028
capture, editing, compressing, and platform-specific pro-029
cessing complicate quality assessment [21, 52]. High Dy-030
namic Range (HDR) imaging further enhances visual expe-031
riences with broader luminance and color gamuts as com-032
pared to Standard Dynamic Range (SDR) [8, 39]. For033
example, HDR10 supports 10-bit depth and Rec. 2020034
color gamut, delivering superior detail in shadows and high-035
lights [16]. Despite significant advances in VQA [2, 8,036
9, 29, 37–39], current SDR-based models fail to capture037
HDR-specific features and in particular, tremendously di-038
verse HDR-UGC distortions, impeding the development of039
effective quality prediction models.040

Towards aiding progress on this increasingly impor-041
tant problem, we introduce BrightVQ, the first large-scale,042
open-source video quality database designed for the qual-043
ity analysis of UGC in HDR format. This dataset includes044
2,100 videos derived from 300 diverse HDR-UGC source045
videos, and spans a wide range of content types, from ac-046
tion sequences to vlogs and natural landscapes (see Ta-047
ble 1). BrightVQ captures coincident HDR-specific and048
UGC-specific distortions, reflecting the complexities of049
real-world HDR-UGC VQA. We also conducted the first050
large-scale crowdsourced subjective study for HDR-UGC,051
collecting 73,794 subjective ratings from participants us-052
ing HDR-capable displays. This rich collection of diverse053
contents and human annotations establishes BrightVQ as a054

*Based on YouTube’s streaming guidelines [12] and Apple’s HLS au-
thoring specifications [4].

powerful resource for advancing HDR-UGC VQA. 055
Additionally, we created BrightRate, a novel model for 056

HDR-UGC quality assessment. BrightRate employs multi- 057
ple branches to capture UGC-specific distortions, semantic 058
cues, and HDR-specific artifacts, especially in extreme lu- 059
minance regions. This hybrid approach yields state-of-the- 060
art prediction accuracy and interpretability, outperforming 061
existing VQA methods. Our experiments on BrightVQ and 062
other HDR datasets (Fig. 2) validate the effectiveness of 063
BrightRate on handling both UGC and HDR-specific dis- 064
tortions. The contributions of this paper are summarized 065
below: 066
• We introduce BrightVQ, the first large-scale HDR-UGC 067

video quality database, that is-ten times larger than previ- 068
ous public HDR datasets [39]. 069

• We conducted the first large-scale crowdsourced subjec- 070
tive study on HDR-UGC videos, collecting 73,794 ratings 071
from over 200 participants. 072

• We created BrightRate, a novel HDR-UGC video qual- 073
ity prediction model that fuses UGC, HDR-specific, se- 074
mantic, and temporal features to achieve state-of-the-art 075
prediction performance. 076

• We conducted extensive experiments on BrightVQ and 077
other HDR datasets to study the effectiveness and broad 078
applicability of BrightRate against other SOTA models. 079

2. Related Work 080

HDR-UGC VQA Databases. Various UGC VQA 081
databases [11, 30, 40, 49, 51, 52] capture real-world dis- 082
tortions falling into two categories: In-the-Wild UGC 083
Datasets[14, 40, 43, 47, 49–51], which contain naturally 084
distorted videos but lack control over degradation types, and 085
Simulated UGC Distortion Datasets[11, 19, 30, 52], which 086
model compression and transmission artifacts in controlled 087
settings. However, HDR VQA databases remain limited 088
in scale, accessibility, and compliance with modern stan- 089
dards. Early datasets like DML-HDR [5] and Compressed- 090
HDR [32] were small and had restricted availability, while 091
others [6, 34] lacked HDR10 compliance. LIVE-HDR [39] 092
introduced a professionally generated HDR dataset but con- 093
tains only 31 video contents, limiting its relevance for UGC 094
scenarios. More recently, Wang et al.[44] created a short- 095
form HDR dataset with 2,000 videos, but only 300 include 096
subjective scores. As HDR adoption in UGC grows, a large- 097
scale VQA database is needed to effectively capture real- 098
world distortions and quality variations. Table 2 compares 099
existing HDR datasets. 100

HDR-UGC VQA Methods. Modern VQA models may 101
be broadly categorized into handcrafted feature-based and 102
deep learning-based methods. Handcrafted approaches [7, 103
17, 25–27, 35] extract powerful distortion-aware statistical 104
and perceptual features but struggle with complex UGC 105
distortions. Deep learning-based models leverage pre- 106
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Table 2. Comparison of BrightVQ with existing HDR VQA datasets.

Dataset Format Total Videos (Ref.) Source Total Opinions Orientation Subjective Study

LIVE-HDR [39] Rec. 2020, HDR10, PGC 310 (31) Internet Archive 2,400 Landscape In-Lab
SFV+HDR [44] (only HDR) Rec. 2020, HDR10, UGC 300 (300) YouTube N/A Portrait In-Lab
BrightVQ (Ours) Rec. 2020, HDR10, UGC 2100 (300) Vimeo 73,794 Portrait+Landscape Crowdsourced

trained networks to extract semantic and perceptual fea-107
tures. Among these, for example, VSFA[18] captures tem-108
poral variations, FAST/FASTER-VQA[45, 46] uses Trans-109
formers, CONTRIQUE[22] applies self-supervised learn-110
ing, and DOVER[47] integrates aesthetic and technical111
quality assessment. However, most models, including these,112
are optimized for SDR and fail to handle HDR-specific dis-113
tortions. HDR-VQM[29] and HDR-BVQM[2] introduce114
brightness-aware features but must rely on reference videos115
or lack HDR-specific adaptations. PU21[24] refines tradi-116
tional metrics with perceptually uniform encoding but re-117
mains content- and display-dependent. HDR-ChipQA[8]118
extends ChipQA with non-linear luminance transforma-119
tions, while HIDRO-VQA [37] trains CONTRIQUE [22]120
on unlabeled HDR videos from YouTube. However, none is121
able to effectively capture HDR-UGC distortions, limiting122
their applicability for HDR-UGC quality prediction.123

3. Large-Scale Dataset and Human Study124

Figure 3. Overview of crowdsourced online subjective study on
Amazon Mechanical Turk (AMT).

In this section, we discuss the newly proposed HDR-125
UGC VQA dataset-BrightVQ. BrightVQ comprises 2,100126
videos generated from 300 diverse HDR-UGC source clips127
that span a wide range of real-world contents—including128
indoor and outdoor scenes, food, vlogs, and natural land-129
scapes (see Fig. 1). Table 1 provides an overview of key130
video specifications and the encoding bitrate ladder used to131
simulate realistic streaming conditions.132

3.1. Dataset Collection133

HDR-UGC videos were sourced from Vimeo under Cre-134
ative Commons licenses. Over 10,000 videos were auto-135
matically filtered by HDR flags, resolution, format, and cat-136
egory, followed by manual verification to ensure authentic-137
ity. Videos were truncated to 10 seconds at a maximum res-138
olution of 1080p using ffmpeg [10] and transcoded with139
an industry-standard bitrate ladder [4, 12]. This multi-stage140
process ensured that BrightVQ represents authentic HDR-141

(a) MOS distribution. (b) Landscape vs. Portrait.

Figure 4. (a) MOS distribution of all videos in BrightVQ. (b)
MOS distributions of landscape and portrait orientation videos in
BrightVQ.

UGC content with diverse distortions. Please refer to Sup- 142
plementary Materials for more details. 143

3.2. Subjective Quality Study 144

To obtain reliable human subjective quality annotations, 145
we conducted the first large-scale crowdsourced HDR-UGC 146
study on AMT (Fig. 3). Over 200 participants with HDR- 147
capable devices provided 73,794 ratings (averaging 35 rat- 148
ings per video). The study included a comprehension quiz, 149
a training phase with six HDR videos, and a testing phase 150
where each subject rated 94 videos (with 5 golden set videos 151
and 5 repeated videos). Rigorous device checks, playback 152
monitoring, and golden set validation ensured that unreli- 153
able raters were excluded, with subject rejections following 154
the ITU-R BT.500-14 standard [15]. 155

To derive robust Mean Opinion Scores (MOS), we em- 156
ployed the SUREAL method [20], which accounts for sub- 157
ject bias and inconsistency. Each rating Sij from subject i 158
for video j is modeled as: 159

Sij = ψj +∆i + νiX, X ∼ N (0, 1), (1) 160

where ψj represents the true quality of video j, ∆i cap- 161
tures the bias of subject i, and νi reflects the rating incon- 162
sistency of subject i. Parameters are estimated using Maxi- 163
mum Likelihood Estimation (MLE), resulting in MOS val- 164
ues that are robust to outliers and unreliable ratings. More 165
details are in Supplementary Materials. 166

3.3. Analysis of MOS 167

Fig. 4a depicts the MOS distribution of BrightVQ, which 168
is right-shifted, similar to other HDR datasets. This trend 169
suggests that HDR videos, due to their inherently higher lu- 170
minance and richer color details, often receive higher qual- 171
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(a) MOS vs. Bitadder.
(b) BrightVQ vs. LIVE-
HDR [39] vs. SFV+HDR [44].

Figure 5. (a) shows the MOS variations across bitladder for
BrightVQ. (b) compares MOS distributions of BrightVQ, LIVE-
HDR [39], and SFV+HDR [44], showing that BrightVQ has a
broader spectrum of MOS with less bias in peak MOS value.

ity ratings. Fig. 4b compares MOS distributions for land-172
scape and portrait videos, showing significant overlap that173
indicates orientation has minimal impact on perceived qual-174
ity. Furthermore, Fig. 5a demonstrates that bitrate strongly175
influences MOS, with lower bitrates resulting in greater176
variability. A comparative analysis in Fig. 5b reveals that177
BrightVQ covers a wider range of MOS values and exhibits178
less bias toward high scores than to existing HDR databases,179
underscoring its ability to capture severe distortions often180
absent from professional HDR collections.181

4. Proposed Method182

Our proposed BrightRate model (Fig. 6) is a novel no-183
reference VQA framework designed for HDR-UGC videos.184
It combines UGC-specific features from the pretrained185
CONTRIQUE [22], semantic cues from a CLIP-based186
encoder [33, 42], HDR features derived under a piece-187
wise non-linear luminance transform on which distortion-188
sensitive natural video statistics are computed [8, 26, 35,189
41], and temporal differences, which are then regressed190
to MOS. Extensive experiments on our BrightVQ and191
other HDR benchmarks demonstrate state-of-the-art perfor-192
mance.193

4.1. UGC Feature Extraction194

UGC typically exhibits a wide range of distor-195
tions—including noise, over/under exposure, camera196
shake, blur, and compression artifacts—stemming from197
the variability of user skills, capture devices, and post-198
processing techniques. The self-supervised CONTRIQUE199
model [22] has demonstrated strong generalization across200
diverse UGC distortions [37], outperforming other fine-201
tuned methods [46, 47]. Let xt ∈ RH×W×3 denote the202
t-th frame of a HDR-UGC video. We extract multi-scale203
features by running the CONTRIQUE [22] encoder on both204
the full and a downsampled half-resolution frame versions205
as:206

U t
scale = fCONTRIQUE(x

t) ∈ RdUGC . (2)207

where dUGC represents the dimensionality of the extracted 208
feature space. The final UGC feature map is denoted U t, 209
which is a concatenation of both the full and half scale 210
UGC features. As demonstrated in prior work [21, 37] and 211
confirmed by our experiments (Sec. 5), CONTRIQUE [22] 212
serves as a robust UGC backbone. 213

4.2. Semantic Feature Extraction 214

Perceptual quality depends not only on technical distor- 215
tions but also on content semantics, which can influence 216
human tolerance to various artifacts [13, 42]. For instance, 217
compression artifacts may be more perceptible on homoge- 218
neous, flat regions than on richly textured areas. To improve 219
content understanding in our HDR-UGC VQA framework, 220
we employ the CLIP Image Encoder [3, 13, 33, 42]. For 221
each appropriately resized sampled frame xt, semantic fea- 222
tures are extracted as 223

Et = fCLIP

(
xt
)

∈ RdSEM . (3) 224

Here, dSEM denotes the semantic feature dimension. Lever- 225
aging CLIP’s fine-grained semantics from millions of 226
image-text pairs, we capture high-level contextual cues 227
that affect perceptual quality. By fusing these with UGC- 228
specific distortion features, we form a holistic representa- 229
tion that enhances sensitivity to both content and technical 230
distortions. 231

4.3. HDR Feature Extraction 232

HDR content suffers from distortions in extreme lumi- 233
nance regions that standard SDR-based VQA methods over- 234
look [9, 37]. To address this limitation, we propose a two- 235
step HDR feature extraction module that combines an ex- 236
pansive non-linearity with natural scene statistics (NSS) 237
modeling. First, each frame xt is converted to YUV and 238
its normalized luminance channel Yt ∈ [0, 1] is extracted. 239
We then subdivide Yt into two intervals (e.g., [0, 0.5] and 240
[0.5, 1]) and apply a piecewise expansive non-linearity in- 241
spired by [8, 39]. Specifically, the non-linearity is defined 242
as: 243

g(x;β) =

{
eβx − 1, x ≥ 0,

1− e−βx, x < 0,
(4) 244

with β = 4 following [8]. This transformation stretches 245
the extreme ends of the luminance scale while compressing 246
mid-range values, thereby amplifying distortions in high- 247
lights and shadows that would otherwise be masked. The 248
expansive non-linearity is applied within a sliding window 249
of size w×w, where we choose w = 31 following [8]. The 250
output is an enhanced luminance channel Ỹt = g(Yt; 4) 251
that more clearly reveals HDR-specific artifacts in very dark 252
or very bright regions. Next, we compute Mean-Subtracted 253
Contrast Normalized (MSCN) coefficients from Ỹt to cap- 254
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Figure 6. The overall framework of BrightRate for HDR-UGC Video Quality Assessment. BrightRate extracts HDR-specific features, and
combines with UGC and Semantic features to give SOTA results on HDR-UGC benchmarks.

ture local image statistics:255

Mt(i, j) =
Ỹt(i, j)− µ(i, j)

σ(i, j) + ϵ
, (5)256

where µ(i, j) and σ(i, j) are computed over a 31× 31 win-257
dow and ϵ is a small constant. The MSCN coefficients fol-258
low a Generalized Gaussian Distribution (GGD), and their259
adjacent products are modeled with an Asymmetric GGD260
(AGGD) [8, 25, 26]. We extract shape and variance param-261
eters from both models and concatenate them across two262
scales to form the HDR-specific feature vector:263

Ht = fHDR

(
Ỹt

)
∈ RdHDR . (6)264

This two-step approach—expanding extreme luminance de-265
tails and extracting NSS-based features—effectively high-266
lights HDR-specific distortions critical for accurate quality267
assessment.268

4.4. Temporal Difference Module269

Videos with higher perceptual quality typically exhibit270
smaller temporal fluctuations, while lower-quality videos271
show abrupt changes [2, 18, 29]. To capture these dynam-272
ics, we compute the absolute difference between consecu-273
tive UGC feature vectors:274

∆U t =
∣∣U t − U t−1

∣∣ , t ∈ {2, . . . , T}, (7)275

where U t denotes the combined UGC feature for frame t276
(see Sec. 4.1). We then concatenate these temporal differ-277
ences with the original features, and normalize the result,278
yielding an enriched representation that captures both static279
distortions and their temporal fluctuations.280

4.5. Quality Regression281

At each frame t, we concatenate the four feature types282
(UGC, temporal difference, semantic, and HDR) into a fea-283

Table 3. Comparison of SOTA IQA and VQA methods on the
BrightVQ dataset, with median (standard deviations) values re-
ported. Best and second-best results are highlighted in red and
blue, respectively, while our proposed BrightRate is shaded in
gray.

Method SROCC(↑)(Std) PLCC(↑)(Std) KROCC(↑)(Std) RMSE(↓)(Std)

NR-IQA

BRISQUE [25] 0.3302 (0.0366) 0.3603 (0.0311) 0.2261 (0.0279) 12.5770 (0.2855)

HDRMAX [39] 0.6276 (0.0321) 0.6318 (0.0356) 0.4409 (0.0288) 10.2428 (0.4008)

CONTRIQUE [22] 0.7081 (0.0297) 0.7074 (0.0395) 0.5177 (0.0239) 11.4635 (1.3339)

REIQA [36] 0.7919 (0.0116) 0.8023 (0.0168) 0.6068 (0.0103) 7.9390 (0.3421)

NR-VQA

VBLIINDS [35] 0.4605 (0.0365) 0.4478 (0.0347) 0.3180 (0.0246) 11.9322 (0.4202)

CONVIQT [23] 0.7026 (0.0462) 0.7202 (0.0510) 0.5134 (0.0431) 10.5817 (1.4206)

VSFA [18] 0.7556 (0.0139) 0.7501 (0.0206) 0.5538 (0.0138) 8.8310 (0.1834)

COVER [13] 0.7609 (0.0201) 0.7917 (0.0252) 0.5597 (0.0181) 7.7352 (0.3104)

FasterVQA [48] 0.7744 (0.0162) 0.7625 (0.0147) 0.5763 (0.0152) 9.0680 (0.2501)

DOVER [47] 0.7745 (0.0155) 0.8060 (0.0207) 0.5924 (0.0123) 7.4641 (0.2801)

FastVQA [45] 0.8094 (0.0121) 0.8530 (0.0156) 0.6445 (0.0106) 7.1336 (0.2402)

NR-HDR-VQA
HDRChipQA [8] 0.6781 (0.0220) 0.6855 (0.0179) 0.4889 (0.0160) 9.5869 (0.3081)

HIDROVQA [37] 0.8526 (0.0217) 0.8620 (0.0136) 0.6680 (0.0215) 6.5708 (0.3367)

BrightRate 0.8887(0.0197) 0.8970(0.0171) 0.7059(0.0227) 5.7514(0.4465)

ture vector zt, with normalization to ensure balanced mag- 284
nitudes. Averaging over T frames yields the clip descrip- 285
tor z = 1

T

∑T
t=1 z

t. A Support Vector Regressor (SVR), 286
known for its stable training and strong generalization abil- 287
ity, is employed as the regressor R(·) to predict the MOS: 288

289
Qi = R(z) . (8) 290

5. Experiment 291

5.1. Databases 292

We evaluated BrightRate on our newly introduced 293
BrightVQ dataset, as well as on SFV+HDR [44] and LIVE- 294
HDR [39]. On For all datasets, we randomly split the 295
videos into 80% training and 20% testing sets based on 296
reference content to ensure that all videos from the same 297
source appeared in the same split [22, 36]. By contrast with 298
UGC-VQA methods such as DOVER [47], KSVQE [21], 299
Fast/Faster-VQA [45, 48], etc. that fine-tune the feature ex- 300
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Figure 7. Scatter plots of actual MOS vs. predicted scores for
various SOTA models on BrightVQ. Red curves show polynomial
parametric fits.

traction backbones, we train only a lightweight regressor,301
preserving the generalization capabilities of the pre-trained302
modules.303

5.2. Implementation Details304

We use the CLIP image encoder (ViT-B32) [33] for se-305
mantic features and the CONTRIQUE model [22] at two306
scales to extract UGC distribution features. HDR features307
are extracted by applying an expansive non-linearity over a308
31×31 window with an expansion power of 4 [8, 39]. Tem-309
poral differences between consecutive CONTRIQUE [22]310
features are computed and averaged. The resulting normal-311
ized, concatenated clip-level descriptor is then fed into an312
SVR, optimized via 5-fold cross validation and evaluated as313
the median over 100 splits using PLCC, SROCC, RMSE,314
and KRCC [21, 22, 36, 37]. More details in Supplementary315
Material.316

5.3. Experiment Results317

5.3.1. Evaluation on BrightVQ Dataset318

Table 3 shows that BrightRate consistently outperforms319
state-of-the-art methods on the BrightVQ dataset by an aver-320
age of ≈ 3% across metrics, achieving the highest SROCC321
of 0.8887, PLCC of 0.8970, and KROCC of 0.7059, while322
maintaining the lowest RMSE of 5.7514. Notably, among323
existing NR-HDR-VQA methods, HIDROVQA [37] per-324
formed second-best, underscoring its ability to capture325
HDR-specific distortions. In the NR-VQA/NR-IQA cate-326
gory, although FastVQA [45] performs well among SDR-327
oriented models, it is outperformed by HDR-specific ap-328
proaches.329

Fig. 7 compares predicted scores to actual MOS across330
several state-of-the-art methods on the BrightVQ dataset.331

(a) (b)

Figure 8. The combination of MOS vs. predicted score plots with
visual comparisons of specific image regions to highlight the cor-
relation between distortion and MOS across different bitrates and
resolutions.

Compared to other methods, BrightRate demonstrates a nar- 332
rower distribution, indicating stronger alignment with sub- 333
jective opinions. Fig. 8 illustrates MOS vs. predicted scores 334
across different bitrates and resolutions on the BrightVQ 335
dataset, highlighting the model’s ability to capture UGC 336
and compression distortions. While the overall correlation 337
is strong, deviations occur at lower bitrates where the model 338
tends to overestimate quality. Visual comparisons further 339
demonstrate how blurring, blocking, and texture loss de- 340
grade perceptual quality, especially in highly compressed 341
videos. These results confirm BrightVQ dataset as a chal- 342
lenging benchmark for HDR-UGC VQA tasks. 343

5.3.2. Evaluation on existing HDR Datasets 344

Table 4 shows that BrightRate outperforms all existing 345
models on both LIVE-HDR [39] and SFV+HDR [44], 346
achieving the highest correlation against MOS. On LIVE- 347
HDR [39], it improves SROCC and PLCC by approx- 348
imately 1.3% and 1.5%, respectively, over the second- 349
best model, demonstrating its effectiveness at capturing 350
HDR-specific distortions. Similarly, on SFV+HDR [44], 351
BrightRate outperforms by 2.6% in SROCC and 1.0% in 352
PLCC, further confirming its robustness across different 353
HDR datasets. Compared to SDR-oriented models, Brigh- 354
tRate achieves significantly higher correlations and reduces 355
RMSE by a large margin, indicating its superior ability to 356
handle both UGC and HDR content. These results validate 357
the effectiveness of BrightRate in predicting HDR percep- 358
tual quality across diverse content and compression settings. 359

5.3.3. Cross-dataset Evaluation 360

We conducted two cross-dataset evaluations: “BrightRate 361
dataset→other datasets” and “other datasets→BrightRate 362
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Table 4. Performance Comparison on LIVE-HDR [39] and SFV+HDR [44] Datasets.

Method
LIVE-HDR SFV+HDR

SROCC(↑) PLCC(↑) KRCC(↑) RMSE(↓) SROCC(↑) PLCC(↑) KRCC(↑) RMSE(↓)

BRISQUE [25] 0.7251 (0.0955) 0.7139 (0.0881) 0.3424 (0.0579) 12.6404 (2.1651) 0.4664 (0.0846) 0.4186 (0.0628) 0.3165 (0.0646) 0.3811 (0.0321)
HDRMAX [39] 0.6308 (0.1214) 0.5088 (0.0911) 0.4509 (0.0962) 15.4146 (5.0564) 0.5371 (0.0654) 0.5463 (0.0660) 0.3821 (0.0529) 0.3495 (0.0170)

CONTRIQUE [22] 0.8170 (0.0672) 0.7875 (0.0705) 0.5876 (0.0420) 11.2514 (2.0548) 0.5901 (0.0450) 0.5959 (0.0455) 0.4204 (0.0330) 0.3368 (0.0264)
REIQA [36] 0.7196 (0.1634) 0.6883 (0.1191) 0.5197 (0.1208) 15.1653 (1.6896) 0.5822 (0.0669) 0.5998 (0.0367) 0.4145 (0.0499) 0.3072 (0.0275)

VBLIINDS [35] 0.7483 (0.1446) 0.7193 (0.1141) 0.2541 (0.1233) 12.7794 (2.3715) 0.3335 (0.1133) 0.2713 (0.1254) 0.2300 (0.0802) 0.3988 (0.0527)
CONVIQT [23] 0.7922 (0.0855) 0.8001 (0.0837) 0.6041 (0.0842) 11.9681 (1.9134) 0.5736 (0.0408) 0.6017 (0.0324) 0.4170 (0.0328) 0.3412 (0.0237)

DOVER [47] 0.6303 (0.0750) 0.6832 (0.0870) 0.4692 (0.0950) 17.0005 (2.0130) 0.6001 (0.0354) 0.6154 (0.1570) 0.4270 (0.0910) 0.5750 (0.0721)
COVER [13] 0.5022 (0.0848) 0.5013 (0.1508) 0.3731 (0.1447) 21.3297 (1.8020) 0.6613 (0.0557) 0.7048 (0.1103) 0.4705 (0.1802) 0.6831 (0.0577)
VSFA [18] 0.7127 (0.1079) 0.6918 (0.1114) 0.5760 (0.1469) 13.0511 (2.4003) 0.6449 (0.0704) 0.7233 (0.0449) 0.4783 (0.0646) 0.2911 (0.0347)

FasterVQA [48] 0.3385 (0.0505) 0.4114 (0.0850) 0.2282 (0.0443) 22.1425 (1.8504) 0.6948 (0.0905) 0.6889 (0.0755) 0.5089 (0.0390) 0.3081 (0.0225)
FastVQA [45] 0.5182 (0.0410) 0.5727 (0.0547) 0.3822 (0.0411) 18.8379 (1.3507) 0.7130 (0.0747) 0.7295 (0.0297) 0.5193 (0.0357) 0.7467 (0.0208)

HDRChipQA [8] 0.8250 (0.0589) 0.8344 (0.0562) 0.4501 (0.0500) 9.8038 (1.7334) 0.6296 (0.0734) 0.6508 (0.0316) 0.4440 (0.0475) 0.3271 (0.0231)
HIDROVQA [37] 0.8793 (0.0672) 0.8678 (0.0643) 0.6919 (0.0508) 8.8743 (1.7538) 0.7003 (0.0606) 0.7320 (0.0514) 0.5156 (0.0541) 0.2735 (0.0250)

BrightRate 0.8907 (0.0425) 0.8824 (0.0470) 0.7178 (0.0492) 8.3955 (1.9260) 0.7328 (0.0509) 0.7709 (0.0252) 0.5415 (0.0496) 0.2679 (0.0236)

Table 5. Cross Data Validation: Train on BrightVQ, Test on LIVE-HDR [39] and SFV+HDR [44].

Method
Test: LIVE-HDR Test: SFV+HDR

SROCC(↑) PLCC(↑) RMSE(↓) KRCC(↑) SROCC(↑) PLCC(↑) RMSE(↓) KRCC(↑)

BRISQUE [25] 0.4201 (0.1371) 0.4267 (0.1092) 16.6469 (1.4088) 0.2882 (0.0989) 0.2078 (0.1270) 0.1485 (0.1448) 54.0184 (0.9749) 0.1466 (0.0895)
HDRMAX [39] 0.1788 (0.0856) 0.2235 (0.0893) 17.6386 (1.1955) 0.1263 (0.0584) 0.4335 (0.1052) 0.4512 (0.1036) 54.3283 (0.8694) 0.3000 (0.0740)
CONTRIQUE [22] 0.5528 (0.0648) 0.5809 (0.0683) 15.2477 (1.0483) 0.3901 (0.0544) 0.4798 (0.0491) 0.5020 (0.0720) 54.0703 (1.2556) 0.3267 (0.0383)
REIQA [36] 0.4255 (0.1413) 0.4919 (0.0936) 15.7472 (1.0587) 0.2911 (0.1002) 0.4573 (0.0624) 0.4349 (0.0493) 52.5308 (0.9482) 0.3119 (0.0454)

CONVIQT [23] 0.6240 (0.1197) 0.6112 (0.1075) 15.0850 (1.2097) 0.4331 (0.0935) 0.4981 (0.0391) 0.5129 (0.0520) 44.0703 (1.3564) 0.4267 (0.0281)
VBLIINDS [35] 0.1524 (0.0823) 0.1520 (0.1416) 24.5003 (3.1376) 0.1194 (0.0594) 0.2949 (0.1330) 0.3871 (0.1441) 56.3203 (0.9249) 0.2072 (0.0928)
HDRChipQA [8] 0.3240 (0.1127) 0.3460 (0.1049) 17.4732 (1.8048) 0.2472 (0.0859) 0.2334 (0.1225) 0.1923 (0.1309) 56.7852 (1.4586) 0.1631 (0.0841)
VSFA [18] 0.4597 (0.1622) 0.4349 (0.1609) 17.4869 (2.0345) 0.3342 (0.1329) 0.4581 (0.0849) 0.5404 (0.0899) 51.4192 (1.3247) 0.3179 (0.0602)
HIDROVQA [37] 0.4086 (0.0915) 0.4918 (0.0924) 15.5255 (0.7523) 0.2886 (0.0728) 0.3398 (0.0491) 0.3020 (0.0720) 24.0703 (1.2556) 0.1267 (0.0383)

BrightRate 0.7362 (0.0741) 0.7337 (0.0563) 15.1022 (0.8398) 0.5524 (0.0621) 0.5310 (0.0670) 0.5465 (0.0730) 51.8795 (1.1711) 0.3629 (0.0510)

dataset” in Table 5 and Table 6. The cross-dataset eval-363
uation results highlight BrightVQ’s strong generalization364
ability, as models trained on it perform well across dif-365
ferent HDR datasets. While some models, such as CON-366
VIQT [23] and HIDROVQA [37], achieve competitive re-367
sults in certain metrics, BrightRate-trained models consis-368
tently demonstrate higher correlations against MOS and369
lower RMSE in most cases. Moreover, models trained370
on other datasets struggled to generalize effectively to371
BrightVQ, especially those trained on SFV+HDR [44], indi-372
cating its limited diversity in representing HDR distortions.373
These findings reinforce BrightVQ’s value as a robust and374
comprehensive benchmark for HDR VQA task.375

5.4. Ablation Study376

To assess the effectiveness of the components in our model,377
namely UGC Feature Extractor, Semantic Feature Extrac-378
tion (CLIP), Temporal Difference Module (Temp), and379
HDR Feature Extraction (HDR)- we conducted an ablation380
study, with results present in Table 7 and 8. The baseline381

model is trained without these components, while our full 382
proposed model integrates all these three components. The 383
findings indicate that each module enhances performance, 384
with the best results achieved when all three are combined. 385

Effectiveness of CLIP Model: Comparing the base- 386
line to the model incorporating CLIP shown in Table 7, we 387
observe significant improvement in SROCC (+0.135) and 388
PLCC (+0.135) on the BrightVQ dataset, along with con- 389
sistent gains across LIVE-HDR [39] and SFV+HDR [44]. 390
This demonstrates that CLIP strengthens the model’s abil- 391
ity to extract meaningful semantic features relevant to video 392
quality assessment. 393

Effectiveness of Temporal Difference Module: Incor- 394
porating the Temporal-Difference Module results in notice- 395
able performance improvements across all datasets. As 396
indicated in Table 7, adding tempporal features increase 397
SROCC (+0.088) and PLCC (+0.075) on BrightVQ dataset 398
compared to the baseline, confirming its ability to capture 399
temporal variations in HDR videos. The improvements on 400
LIVE-HDR [39] and SFV+HDR [44] were relatively mod- 401
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Table 6. Cross Data Validation on BrightVQ Test Set. Columns under “Train: LIVE-HDR [39]” report metrics when training on LIVE-
HDR [39] and testing on BrightVQ, while those under “Train: SFV+HDR [44]” report metrics when training on SFV+HDR [44] and
testing on BrightVQ.

Method
Train: LIVE-HDR [39], Test: BrightVQ Train: SFV+HDR [44], Test: BrightVQ

SROCC(↑) PLCC(↑) RMSE(↓) KRCC(↑) SROCC(↑) PLCC(↑) RMSE(↓) KRCC(↑)

BRISQUE [25] 0.1411 (0.0778) 0.1420 (0.1052) 15.6298 (1.3612) 0.0971 (0.0515) 0.1388 (0.0820) 0.1486 (0.1023) 55.0998 (0.6600) 0.0890 (0.0554)
HDRMAX [39] 0.1176 (0.0480) 0.0489 (0.0524) 13.7844 (0.3274) 0.0777 (0.0334) 0.2302 (0.0415) 0.2451 (0.0461) 55.0761 (0.6489) 0.1565 (0.0298)
CONTRIQUE [22] 0.6392 (0.0196) 0.7135 (0.0204) 22.5554 (0.8008) 0.4588 (0.0154) 0.5538 (0.0241) 0.5248 (0.0258) 55.0629 (0.6549) 0.3780 (0.0194)
REIQA [36] 0.6056 (0.0232) 0.6119 (0.0168) 10.4203 (0.2005) 0.4196 (0.0173) 0.3995 (0.0378) 0.3554 (0.0461) 55.0996 (0.6411) 0.2850 (0.0276)

CONVIQT [23] 0.6563 (0.0650) 0.6858 (0.0642) 10.5680 (1.1620) 0.4744 (0.0492) 0.5294 (0.0392) 0.5387 (0.0394) 55.0753 (0.6525) 0.3637 (0.0302)
VBLIINDS [35] 0.1036 (0.0620) 0.0541 (0.0613) 13.5020 (0.2067) 0.0679 (0.0424) 0.2093 (0.0572) 0.1731 (0.0694) 55.0335 (0.2067) 0.1462 (0.0391)
HDRChipQA [8] 0.3817 (0.0503) 0.3811 (0.0703) 13.4357 (0.5963) 0.2652 (0.0353) 0.0523 (0.0687) 0.0382 (0.0606) 55.0512 (0.6565) 0.0334 (0.0460)
VSFA [18] 0.5770 (0.0577) 0.6066 (0.0550) 10.5367 (0.4795) 0.4104 (0.0471) 0.3551 (0.0448) 0.3361 (0.0494) 55.1327 (0.6452) 0.2425 (0.0339)
HIDROVQA [37] 0.6931 (0.0456) 0.7015 (0.0435) 12.9803 (0.8618) 0.4918 (0.0346) 0.5261 (0.0426) 0.5041 (0.0423) 55.1434 (0.6609) 0.3597 (0.0307)

BrightRate 0.6669 (0.0346) 0.7459 (0.0373) 9.4324 (0.7087) 0.4806 (0.0260) 0.5892 (0.0249) 0.5308 (0.0263) 55.0568 (0.6537) 0.4004 (0.0204)

Table 7. Ablation Study I: Effect of Modules on SROCC (↑) and
PLCC (↑). Results are reported for BrightVQ, LIVE-HDR [39],
and SFV+HDR [44] datasets.

Module/s BrightRate LIVE-HDR SFV+HDR

SROCC PLCC SROCC PLCC SROCC PLCC

Baseline(CONTRIQUE) 0.7081 0.7074 0.7868 0.8016 0.5901 0.5959
+CLIP 0.8431 0.8424 0.8325 0.8230 0.6403 0.6598
+Temporal-Difference 0.7961 0.7821 0.8159 0.8157 0.6161 0.6749
+HDR 0.8485 0.8489 0.8301 0.8129 0.6250 0.6408

Table 8. Ablation Study II: Effect of Combinations of Modules
on SROCC (↑) and PLCC (↑). Note: ”Temp” here represents
Temporal-Difference Module.

Module/s BrightRate LIVE-HDR SFV+HDR

SROCC PLCC SROCC PLCC SROCC PLCC

+(CLIP+Temp) 0.8368 0.8578 0.8494 0.8276 0.6318 0.6894
+(HDR+Temp) 0.8389 0.8564 0.8510 0.8319 0.6773 0.6734
+(CLIP+HDR) 0.8463 0.8470 0.8673 0.8301 0.6943 0.7032
BrightRate 0.8887 0.8970 0.8907 0.8824 0.7328 0.7709

est, suggesting that these two datasets may contain fewer402
temporal artifacts, making motion-aware learning less in-403
fluential.404

Effectiveness of HDR Feature Extraction Module:405
The HDR-specific feature extraction module enhances the406
model’s ability to detect distortions unique to HDR content.407
Comparing the baseline with the HDR Feature Extraction408
module in Table 7, we observe an SROCC increase (+0.140)409
and PLCC increase of (+0.141) on the BrightVQ dataset,410
emphasizing the module’s critical role in HDR quality as-411
sessment. The improvements extend to LIVE-HDR [39]412
(SROCC: 0.8301) and SFV+HDR [44] (SROCC: 0.6250),413
confirming that HDR-specific feature extraction is essential414
for accurate VQA performance.415

Effectiveness of Combining Components: The com-416
bination results shown in Table 8 indicate that different417

combinations of CLIP, Temp, and HDR lead to varying 418
degrees of improvement, highlighting the complementary 419
roles of these components. CLIP+HDR achieves the high- 420
est performance in SROCC among two-component combi- 421
nations across all datasets, demonstrating the strong syn- 422
ergy between semantic understanding and HDR-specific 423
feature learning in assessing HDR video quality. De- 424
spite its relatively weaker impact compared to CLIP and 425
HDR, Temp enhances overall performance when included 426
in the overall model, particularly on LIVE-HDR [39] and 427
SFV+HDR [44]. This confirms that while Temp alone is not 428
the primary driver of performance, it refines and stabilizes 429
predictions in dynamic scenes, making it a valuable addition 430
in a comprehensive HDR video quality assessment frame- 431
work. The best performance is achieved when all compo- 432
nents—UGC, CLIP, Temp, and HDR—are combined, as 433
this allows the model to leverage semantic understanding, 434
HDR-aware distortion modeling, and temporal consistency 435
with UGC features simultaneously. 436

6. Conclusion 437

In this paper, we introduce BrightVQ, the first large- 438
scale HDR-UGC video quality database, and BrightRate, 439
a novel no-reference VQA model for HDR-UGC content. 440
BrightVQ, comprising 2,100 videos and 73,794 subjective 441
ratings, offers a comprehensive benchmark for real-world 442
HDR quality assessment. BrightRate fuses UGC distortion, 443
semantic, HDR-specific (via expansive non-linearity), and 444
temporal features to robustly predict quality scores. Ex- 445
tensive experiments on BrightVQ and other HDR datasets 446
demonstrate its state-of-the-art performance. Our dataset 447
and model are publicly available, providing a valuable re- 448
source for future research in HDR-UGC VQA. 449
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