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Supplementary Material Outline001

This supplementary material is organized as follows:002
• Appendix A: An overview of UGC and HDR video qual-003

ity assessment challenges.004
• Appendix B.1: Comprehensive details on video collec-005

tion, filtering, transcoding, and the bitrate ladder.006
• Appendix B.2: Full description of our AMT study, in-007

cluding instructions, screening procedure, and rejection008
criteria.009

• Appendix B.3: Analysis of inter-subject consistency and010
SUREAL-based MOS estimation.011

• Appendix C: Detailed examination of luminance, color-012
fulness, and spatial-temporal characteristics.013

• Appendix D: Additional technical specifics on resizing,014
normalization, and training.015

• Appendix E: Extended results, ablation studies, and fail-016
ure case analyses.017

A. Background018

The explosion of UGC on platforms such as YouTube,019
Facebook, Instagram, and TikTok has transformed video020
streaming into a ubiquitous, user-driven experience, gen-021
erating billions of daily views [1, 12, 13]. However, di-022
verse distortion patterns arising from user editing, compres-023
sion, and platform-specific processing complicate quality024
assessment [10, 18]. High Dynamic Range (HDR) imag-025
ing, supported by mainstream platforms and devices, offers026
enhanced visual experiences through a broader luminance027
and color range. Unlike Standard Dynamic Range (SDR)028
videos, which are limited to 0.1 to 100 cd/m2, HDR can029
represent luminance from 10−4 to 104 cd/m2 [8]. HDR10,030
a widely adopted format, supports 10-bit color depth and031
Rec. 2020 color gamut (covering 75.8% of the CIE 1931032
color space), providing higher peak luminance, improved033
color accuracy, and more detail in both shadows and high-034
lights, offering a richer, more immersive viewing experi-035
ence than SDR. The transition to HDR for UGC poses036
challenges for Video Quality Assessment (VQA) due to in-037
creased bit depth, broader luminance range, and complex038

electro-optical transfer functions (EOTFs) like SMPTE ST 039
2084 [16]. Traditional SDR-based models fail to capture 040
these HDR-specific features and the variability of distor- 041
tions from different devices and editing techniques, thereby 042
impeding effective quality prediction. Furthermore, the ab- 043
sence of a publicly available HDR-UGC database has lim- 044
ited the development of HDR-specific VQA models. 045

B. Details of Dataset Construction 046

Figure 1. Overview of the dataset preparation approach.

Fig. 1 provides an overview of the entire dataset prepa- 047
ration pipeline. This multi-stage process guarantees that 048
BrightVQ reflects authentic HDR-UGC content with diverse 049
distortions 050

B.1. Video data Collection 051

Figure 2. HDR specific challenges, and transcoding (on top of
ugc) and ugc challenges in BrightVQ.
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Table 1. Bitladder used for dataset creation. Each video was en-
coded at multiple bitrates to simulate real-world streaming condi-
tions1.

Resolution Bitrates (Mbps)
360p 0.2
720p 0.5, 2.0
1080p 0.5, 1.0, 3.0
1080p Reference

Figure 3. Resolution distribution of BrightVQ dataset, maintain-
ing a balanced mix of landscape and portrait videos to study
orientation-based perceptual differences.

HDR-UGC videos were collected from Vimeo under052
Creative Commons licenses to ensure open-source acces-053
sibility. An initial pool of over 10,000 videos was automat-054
ically filtered using metadata checks for HDR flags, resolu-055
tion, format consistency, and common categories to remove056
duplicates and professionally produced content. This was057
followed by a rigorous manual inspection to verify authen-058
tic UGC. Given the nature of UGC, the dataset includes an059
equal mix of landscape and portrait videos. Fig. 4 shows060
randomly selected frames from BrightVQ, illustrating the061
diversity in video sizes and aspect ratios. This diversity062
highlights the broad representation of UGC content in terms063
of resolution, aspect ratios, and distortions.064

Each selected video was truncated to a maximum of 10065
seconds using ffmpeg [5] and maintained at up to 1080p066
resolution. To simulate the viewing experience on social067
media platforms, where videos are often transcoded, we ap-068
plied a bitrate ladder inspired by industry standards [2, 6]069
to create the final dataset. Tab. 1 shows the resolution and070
bitrates used in this bit ladder. The filtered videos were071
then transcoded following this bitrate ladder to simulate072
real-world streaming conditions, ensuring a diverse range of073
compression artifacts. To explore the impact of bitrate se-074
lection on perceived video quality, Fig. 6 presents the MOS075
variations across different bitrate ladders, separately ana-076
lyzing landscape and portrait videos. The box plot repre-077
sentation highlights the diversity in perceptual quality rat-078

1Based on YouTube’s streaming guidelines [6] and Apple’s HLS au-
thoring specifications [2].

ings across different encoding configurations, showing how 079
bitrate and resolution choices affect MOS scores. Fig. 3 il- 080
lustrates the resolution density distribution of videos in the 081
BrightVQ dataset. Fig. 5 further visualizes the compression 082
artifacts introduced through this approach. This multi-stage 083
process guarantees that BrightVQ reflects authentic HDR- 084
UGC content with diverse distortions. 085

B.2. Crowdsourced Subjective Study 086

We employed Amazon Mechanical Turk (AMT) to collect 087
human quality ratings for our HDR-UGC videos, adapting 088
protocols from previous studies [3, 17]. This is the first 089
large-scale HDR-UGC study conducted on AMT, address- 090
ing challenges associated with remote HDR evaluation. To 091
ensure data reliability, we implemented a rigorous multiple- 092
stage filtering process. 093

The general instruction of this study on AMT is illus- 094
trated in Fig. 7. Initially, subjects were presented with de- 095
tailed instructions and a comprehension quiz (Fig. 8) to con- 096
firm their understanding of the rating process. Only those 097
with HDR-capable displays, verified through automated dy- 098
namic checks for bit depth, codec support, and display res- 099
olution, were allowed to proceed. Before entering the main 100
study, subjects completed a training phase where they rated 101
six HDR videos to familiarize themselves with the interface 102
(Fig. 9). The testing phase followed, in which each par- 103
ticipant rated 94 videos using a 0–100 Likert scale (rating 104
method shown in Fig. 10). To ensure rating consistency, we 105
embedded five golden set videos and five duplicate videos 106
within the test set. Ethical considerations are provided in 107
Fig. 11. 108

To maintain data integrity, we implemented strict rejec- 109
tion criteria at multiple stages: 110
• During Instructions: Participants with incompatible de- 111

vices were disqualified. 112
• During Training: Continuous HDR and device checks 113

ensured that participants did not switch displays mid-task. 114
Those with incomplete downloads or playback manipula- 115
tions were excluded. 116

• During Testing: Participants were monitored at 25%, 117
50%, and 75% of task completion. Those exhibiting 118
over 50% playback issues or inconsistent ratings on du- 119
plicate/golden set videos (deviations exceeding 20–25%) 120
were removed. 121
In total, over 200 subjects provided 73,794 ratings (an 122

average of 35 ratings per video). 123

B.3. Subjective Score Processing 124

To evaluate inter-subject consistency, we randomly split all 125
MOS ratings into two independent groups and computed the 126
Spearman Rank Correlation Coefficient (SRCC) and Pear- 127
son Linear Correlation Coefficient (PLCC) between them. 128
As shown in Fig. 12a, the study achieved a median SRCC of 129



ICCV
#5421

ICCV
#5421

ICCV 2025 Submission #5421. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Sports (MOS: 31.77)
[Video Link]

(b) Cats (MOS: 41.61)
[Video Link]

(c) Christmas Tree (MOS: 64.95)
[Video Link]

(d) Dance (MOS: 37.05)
[Video Link]

(e) Art (MOS: 50.89)
[Video Link]

(f) Game (MOS: 65.02)
[Video Link]

(g) Car (MOS: 71.06)
[Video Link]

Figure 4. Example frames from BrightVQ dataset. Each frame is presented with its category, the MOS for the video and a direct video
access link.

(a) (b)

Figure 5. The combination of MOS vs. predicted score plots with visual comparisons of specific image regions to highlight the correlation
between distortion and MOS across different bitrates and resolutions.

https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/f483f35112485c828753f1cf7e388d8d.mp4
https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/2e7fe70e343c725b43535d7895b80fd2.mp4
https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/4666eed6517ace58be1b6c534aa6b051.mp4
https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/92d1dc02f83f4ed6ff0aeeef40e054c4.mp4
https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/0da0a48b2db8ecdc17527975ef300721.mp4
https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/4ef9d053bc6518b9aa195b15bf01eafa.mp4
https://ugchdrmturk.s3.us-east-2.amazonaws.com/videos/4a620da09a05c5bff06e8680db339fd9.mp4
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(a) MOS vs. Bitrate. (b) MOS vs. Resolution.

Figure 6. (a) and (b) show the MOS variations across bitrate and
resolution respectively for BrightVQ.

Figure 7. General instruction of this study on AMT.

Figure 8. Quiz phase on AMT.

Figure 9. Train-test Instruction phase on AMT.

Figure 10. Rating instructions on AMT.

Figure 11. Ethics policy on AMT.

(a) (b)

Figure 12. (a). Inter-subject correlation. (b). MOS CDF distribu-
tion of all videos in BrightVQ.

0.90 and a median PLCC of 0.92, demonstrating a high level 130
of agreement between independent participant groups. This 131
strong correlation validates the effectiveness of our data col- 132
lection methodology, which incorporated device filtering, 133
training phases, and golden set validation to ensure consis- 134
tent and reliable subjective ratings. 135
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We computed Mean Opinion Scores (MOS) using the136
SUREAL method [9], which refines traditional MOS com-137
putation by accounting for individual subject bias and rat-138
ing inconsistency. Traditional MOS calculations typically139
employ a hard rejection approach, where raters failing pre-140
defined consistency criteria (e.g., ITU-R BT.500-14 out-141
lier detection [7]) are completely excluded from the anal-142
ysis. However, this method discards potentially useful data143
and does not account for varying levels of rating reliability144
among retained subjects. SUREAL takes a soft rejection145
approach by modeling each rating probabilistically. Each146
rating Sij from subject i for video j is modeled as:147

Sij = ψj +∆i + νiX, X ∼ N (0, 1), (1)148

where ψj represents the true quality of video j, ∆i captures149
the bias of subject i, and νi reflects the rating inconsistency150
of subject i. The parameters are estimated using Maxi-151
mum Likelihood Estimation (MLE), maximizing the like-152
lihood. Unlike hard rejection, which entirely removes out-153
liers, SUREAL downweights ratings from less reliable sub-154
jects. This ensures that MOS values reflect true perceptual155
quality while mitigating distortions from inconsistent raters.156
By applying SUREAL, we obtained more stable MOS es-157
timates, which accurately reflect the perceptual quality of158
HDR content across diverse video conditions. The CDF dis-159
tribution of all videos in BrightVQ are shown in Fig. 12b.160

C. Analysis of the HDR content161

In this section, we provide a detailed analysis of the162
dataset’s key characteristics, focusing on luminance and163
color distribution, spatial-temporal diversity, perceptual164
quality trends, and HDR-specific challenges.165

Fig. 13 presents the distribution of luma and colorfulness166
across the 300 source HDR videos in BrightQA. The first167
three histograms illustrate the minimum, maximum, and168
mean luma values, highlighting the variation in brightness169
levels across different videos. This demonstrates that the170
dataset includes both dark and bright HDR scenes, ensur-171
ing a wide dynamic range. The fourth histogram shows the172
colorfulness distribution, reflecting variations in chromatic173
intensity across different videos.174

To further quantify the diversity in content complex-175
ity, Fig. 14 presents an analysis of spatial-temporal com-176
plexity, spatial information (SI), and temporal information177
(TI) within the dataset. The scatter plots in Fig. 14 (a)-(c)178
demonstrate the variability in SI and TI values, showing a179
wide distribution of motion and texture complexity across180
the dataset. Higher SI values typically correspond to de-181
tailed textures and sharp edges, while higher TI values in-182
dicate rapid motion or dynamic scenes. The dataset covers183
both high-detail static scenes and fast-moving dynamic con-184
tent, ensuring its suitability for evaluating compression and185
HDR features across different motion characteristics.186

Figure 13. Distribution of luma and colorfulness of the source
HDR-UGC videos in BrightVQ dataset.

(a) SITI (b) MOS vs. SI (c) MOS vs. TI

Figure 14. (a) Spatial-Temporal Complexity, (b) MOS vs. Spatial
Information (SI), and (c) MOS vs. Temporal Information (TI).

Fig. 15 demonstrates the diversity of BrightVQ dataset 187
in both aesthetic and technical aspects. The scatter plot 188
shows a wide range of ratings, with each point represent- 189
ing a video and color-coded by its actual subjective quality 190
score. The marginal histograms further highlight the dis- 191
tribution of scores, illustrating the broad variation in per- 192
ceptual and technical quality across different content. The 193
BrightVQ dataset presents a diverse range of HDR-UGC 194
content, covering natural landscapes, indoor scenes, and 195
various complex lighting conditions, capturing both HDR- 196
specific and UGC-specific distortions. This diversity en- 197
sures that BrightVQ provides a comprehensive and realistic 198
benchmark for evaluating video quality. 199

Figure 16 provides examples of HDR videos subjected 200
to various spatial resolutions and bitrates, along with their 201
MOS and luminance histograms. In (a) and (c), the 202
higher-resolution, higher-bitrate frames retain more de- 203
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Figure 15. Diversity in aesthetic and technical quality scores in
BrightVQ datset.

tails and exhibit fewer artifacts, whereas lower-resolution,204
lower-bitrate versions show noticeable blocking and band-205
ing—particularly in the extreme luma regions. Subfig-206
ures (b) and (d) illustrate the broader luminance distribu-207
tion characteristic of HDR, indicating significant content in208
both low and high intensity ranges. Such distributions un-209
derscore the importance of HDR-specific processing, since210
distortions in extreme luminance regions can disproportion-211
ately affect subjective quality.212

D. More details on Implementation213

Here we detail the key implementation steps of our Brigh-214
tRate model. For semantic features, input frames are resized215
to 224 × 224 and passed through the CLIP image encoder216
(ViT-B32) [14], yielding high-level semantic representa-217
tions. UGC features are extracted using CONTRIQUE [11]218
at two scales: the original frame and a half-resolution ver-219
sion following the original implementation [11]. For HDR220
features, we convert each frame to YUV, extract the lumi-221
nance channel Yt ∈ [0, 1], and apply a piecewise expansive222
non-linearity over a 31 × 31 window with β = 4 [4, 15].223
We then compute MSCN coefficients on the transformed224
luminance and model their statistics using GGD/AGGD to225
obtain HDR features Ht. Temporal dynamics are captured226
by computing the absolute differences between consecutive227
CONTRIQUE [11] features:228

∆U t =
∣∣U t − U t−1

∣∣ , (2)229

which are then globally averaged and concatenated with230
the spatial features. The final clip-level representation is231
formed by normalizing and concatenating the UGC, seman-232
tic, and HDR features:233

z = Norm
(
U ⊕ E ⊕H

)
. (3)234

This vector is then fed to a Support Vector Regressor (SVR) 235
to predict the MOS. We train the SVR using 5-fold cross- 236
validation to optimize the regularization parameter and re- 237
peat the process over 100 random splits, reporting the me- 238
dian performance. The training loss is given by: 239

L =
1

N

N∑
i=1

(
Qi − Q̂i

)2

, (4) 240

where Qi and Q̂i denote the ground-truth and predicted 241
MOS, respectively. Only the regressor is trained, while 242
the feature extraction modules remain fixed. These imple- 243
mentation details ensure a robust and efficient extraction of 244
multi-scale UGC, semantic, and HDR features, enabling ac- 245
curate quality prediction on HDR-UGC videos. 246

E. More Experimental Results 247

To assess the effectiveness of existing No-Reference Video 248
Quality Assessment models on the BrightVQ dataset, we 249
conducted a comprehensive evaluation of multiple state-of- 250
the-art methods. Fig. 17 expands upon Fig. 9, which pre- 251
sented results for only six models, by providing a more ex- 252
tensive comparison across 13 NR-VQA model. The scatter 253
plots compare predicted scores vs. MOS, with red paramet- 254
ric fitting lines highlighting the correlation trends, while the 255
Pearson correlation coefficient (r) quantifies each model’s 256
predictive performance. 257

Among the evaluated models, some traditional hand- 258
crafted feature-based approaches exhibit limited correlation 259
with MOS, highlighting their challenges in capturing the 260
complexity of HDR-specific distortions in UGC content. 261
Deep learning-based methods show stronger performance, 262
with several achieving a higher degree of correlation by 263
leveraging learned features and spatiotemporal representa- 264
tions. Moreover, HDR-specific VQA models generally out- 265
perform generic NR-VQA methods, demonstrating the im- 266
portance of HDR-aware architectures in perceptual quality 267
assessment. Our proposed BrightRate model achieves the 268
highest correlation (r = 0.91), significantly outperforming 269
other approaches. The scatter plot for BrightRate shows 270
a strong linear relationship between predicted scores and 271
MOS, indicating its high accuracy and reliability in evalu- 272
ating HDR video quality. 273

Fig. 18 presents several failure cases where the pre- 274
dicted video quality scores deviate significantly from the ac- 275
tual MOS. These discrepancies highlight limitations in the 276
model’s ability to accurately predict perceptual quality un- 277
der certain conditions. Fig. 18 (a) illustrates cases where 278
low-resolution, highly compressed videos received higher- 279
than-expected predictions. The close-up patches of com- 280
pressed video artifacts reveal that blockiness and blurring 281
effects are not always adequately penalized by the model, 282
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(a) (b)

(c) (d)

Figure 16. Illustrations of HDR content under different resolutions and bitrates. (a) and (c) show reference frames at 1080p and their lower-
resolution, lower-bitrate counterparts, with red boxes highlighting high luma areas with artifacts (e.g., blocking, color banding) become
more pronounced. The corresponding MOS values indicate how these distortions affect subjective perception. (b) and (d) present the
luminance histograms of the respective frames, revealing a broader distribution for HDR content that spans both low and high luminance
ranges. This demonstrates the increased complexity of HDR videos.

Figure 17. Scatter plots of actual MOS vs. predicted scores for 13 methods evaluated on BrightVQ, with parametric fits l(s) in red. A
tighter clustering around the diagonal curve indicates a stronger alignment with subjective opinions. Methods yielding narrower scatter
demonstrate higher predictive accuracy and consistency, underscoring their ability to capture the underlying perceptual quality cues.

leading to overestimated quality scores in severely com-283
pressed videos. Fig. 18 (b) show video screenshots with284
complex textures, reflections, or dynamic lighting, where285
the model struggles to properly assess fine details and HDR286

characteristics. In videos with human subjects, facial ex- 287
pressions, lighting conditions, or background complexity 288
may lead to misinterpretations of perceptual quality by the 289
model. These failure cases highlight the need for further re- 290
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(a) (b)

Figure 18. Failure cases in BrightRate predictions.

finement in BrightRate’s HDR-aware feature extraction and291
compression robustness, ensuring improved alignment with292
human perception.293
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